yuzu/src/input_common/gcadapter/gc_poller.cpp

282 lines
9.8 KiB
C++
Raw Normal View History

2020-06-21 19:31:57 +00:00
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
2020-06-21 16:36:28 +00:00
#include <atomic>
#include <list>
#include <mutex>
#include <utility>
#include "common/threadsafe_queue.h"
2020-06-21 19:31:57 +00:00
#include "input_common/gcadapter/gc_adapter.h"
#include "input_common/gcadapter/gc_poller.h"
2020-06-21 16:36:28 +00:00
namespace InputCommon {
class GCButton final : public Input::ButtonDevice {
public:
explicit GCButton(int port_, int button_, GCAdapter::Adapter* adapter)
: port(port_), button(button_), gcadapter(adapter) {}
2020-06-21 16:36:28 +00:00
~GCButton() override;
bool GetStatus() const override {
return gcadapter->GetPadState()[port].buttons.at(button);
2020-06-21 16:36:28 +00:00
}
private:
const int port;
const int button;
GCAdapter::Adapter* gcadapter;
2020-06-21 16:36:28 +00:00
};
class GCAxisButton final : public Input::ButtonDevice {
public:
explicit GCAxisButton(int port_, int axis_, float threshold_, bool trigger_if_greater_,
GCAdapter::Adapter* adapter)
: port(port_), axis(axis_), threshold(threshold_), trigger_if_greater(trigger_if_greater_),
gcadapter(adapter), origin_value(adapter->GetOriginValue(port_, axis_)) {
// L/R triggers range is only in positive direction beginning near 0
// 0.0 threshold equates to near half trigger press, but threshold accounts for variability.
if (axis > 3) {
threshold *= -0.5;
}
}
2020-06-21 16:36:28 +00:00
bool GetStatus() const override {
const float current_axis_value = gcadapter->GetPadState()[port].axes.at(axis);
const float axis_value = (current_axis_value - origin_value) / 128.0f;
2020-06-21 16:36:28 +00:00
if (trigger_if_greater) {
// TODO: Might be worthwile to set a slider for the trigger threshold. It is currently
// always set to 0.5 in configure_input_player.cpp ZL/ZR HandleClick
return axis_value > threshold;
2020-06-21 16:36:28 +00:00
}
return axis_value < -threshold;
2020-06-21 16:36:28 +00:00
}
private:
const int port;
const int axis;
float threshold;
bool trigger_if_greater;
GCAdapter::Adapter* gcadapter;
const float origin_value;
2020-06-21 16:36:28 +00:00
};
GCButtonFactory::GCButtonFactory(std::shared_ptr<GCAdapter::Adapter> adapter_)
: adapter(std::move(adapter_)) {}
2020-06-21 16:36:28 +00:00
GCButton::~GCButton() = default;
2020-06-21 16:36:28 +00:00
std::unique_ptr<Input::ButtonDevice> GCButtonFactory::Create(const Common::ParamPackage& params) {
const int button_id = params.Get("button", 0);
const int port = params.Get("port", 0);
constexpr int PAD_STICK_ID = static_cast<u16>(GCAdapter::PadButton::PAD_STICK);
// button is not an axis/stick button
if (button_id != PAD_STICK_ID) {
auto button = std::make_unique<GCButton>(port, button_id, adapter.get());
return std::move(button);
}
2020-06-21 16:36:28 +00:00
// For Axis buttons, used by the binary sticks.
if (button_id == PAD_STICK_ID) {
2020-06-21 16:36:28 +00:00
const int axis = params.Get("axis", 0);
const float threshold = params.Get("threshold", 0.25f);
2020-06-21 16:36:28 +00:00
const std::string direction_name = params.Get("direction", "");
bool trigger_if_greater;
if (direction_name == "+") {
trigger_if_greater = true;
} else if (direction_name == "-") {
trigger_if_greater = false;
} else {
trigger_if_greater = true;
LOG_ERROR(Input, "Unknown direction {}", direction_name);
}
return std::make_unique<GCAxisButton>(port, axis, threshold, trigger_if_greater,
adapter.get());
2020-06-21 16:36:28 +00:00
}
}
Common::ParamPackage GCButtonFactory::GetNextInput() {
Common::ParamPackage params;
GCAdapter::GCPadStatus pad;
auto& queue = adapter->GetPadQueue();
for (std::size_t port = 0; port < queue.size(); ++port) {
while (queue[port].Pop(pad)) {
2020-06-21 16:36:28 +00:00
// This while loop will break on the earliest detected button
params.Set("engine", "gcpad");
params.Set("port", static_cast<int>(port));
for (const auto& button : GCAdapter::PadButtonArray) {
const u16 button_value = static_cast<u16>(button);
if (pad.button & button_value) {
params.Set("button", button_value);
break;
}
2020-06-21 16:36:28 +00:00
}
2020-06-21 16:36:28 +00:00
// For Axis button implementation
if (pad.axis != GCAdapter::PadAxes::Undefined) {
params.Set("axis", static_cast<u8>(pad.axis));
params.Set("button", static_cast<u16>(GCAdapter::PadButton::PAD_STICK));
2020-06-21 16:36:28 +00:00
if (pad.axis_value > 128) {
params.Set("direction", "+");
params.Set("threshold", "0.25");
2020-06-21 16:36:28 +00:00
} else {
params.Set("direction", "-");
params.Set("threshold", "-0.25");
2020-06-21 16:36:28 +00:00
}
break;
}
}
}
return params;
}
void GCButtonFactory::BeginConfiguration() {
polling = true;
adapter->BeginConfiguration();
2020-06-21 16:36:28 +00:00
}
void GCButtonFactory::EndConfiguration() {
polling = false;
adapter->EndConfiguration();
2020-06-21 16:36:28 +00:00
}
class GCAnalog final : public Input::AnalogDevice {
public:
GCAnalog(int port_, int axis_x_, int axis_y_, float deadzone_, GCAdapter::Adapter* adapter)
: port(port_), axis_x(axis_x_), axis_y(axis_y_), deadzone(deadzone_), gcadapter(adapter),
origin_value_x(adapter->GetOriginValue(port_, axis_x_)),
origin_value_y(adapter->GetOriginValue(port_, axis_y_)) {}
2020-06-21 16:36:28 +00:00
float GetAxis(int axis) const {
std::lock_guard lock{mutex};
// division is not by a perfect 128 to account for some variance in center location
2020-06-21 19:31:57 +00:00
// e.g. my device idled at 131 in X, 120 in Y, and full range of motion was in range
// [20-230]
if (axis % 2 == 0)
return (gcadapter->GetPadState()[port].axes.at(axis) - origin_value_x) / 95.0f;
else
return (gcadapter->GetPadState()[port].axes.at(axis) - origin_value_y) / 95.0f;
2020-06-21 16:36:28 +00:00
}
std::pair<float, float> GetAnalog(int axis_x, int axis_y) const {
2020-06-21 16:36:28 +00:00
float x = GetAxis(axis_x);
float y = GetAxis(axis_y);
// Make sure the coordinates are in the unit circle,
// otherwise normalize it.
float r = x * x + y * y;
if (r > 1.0f) {
r = std::sqrt(r);
x /= r;
y /= r;
}
return {x, y};
2020-06-21 16:36:28 +00:00
}
std::tuple<float, float> GetStatus() const override {
const auto [x, y] = GetAnalog(axis_x, axis_y);
const float r = std::sqrt((x * x) + (y * y));
if (r > deadzone) {
return {x / r * (r - deadzone) / (1 - deadzone),
y / r * (r - deadzone) / (1 - deadzone)};
2020-06-21 16:36:28 +00:00
}
return {0.0f, 0.0f};
2020-06-21 16:36:28 +00:00
}
bool GetAnalogDirectionStatus(Input::AnalogDirection direction) const override {
const auto [x, y] = GetStatus();
const float directional_deadzone = 0.4f;
switch (direction) {
case Input::AnalogDirection::RIGHT:
return x > directional_deadzone;
case Input::AnalogDirection::LEFT:
return x < -directional_deadzone;
case Input::AnalogDirection::UP:
return y > directional_deadzone;
case Input::AnalogDirection::DOWN:
return y < -directional_deadzone;
}
return false;
}
private:
const int port;
const int axis_x;
const int axis_y;
const float deadzone;
const float origin_value_x;
const float origin_value_y;
2020-06-21 16:36:28 +00:00
mutable std::mutex mutex;
GCAdapter::Adapter* gcadapter;
2020-06-21 16:36:28 +00:00
};
/// An analog device factory that creates analog devices from GC Adapter
GCAnalogFactory::GCAnalogFactory(std::shared_ptr<GCAdapter::Adapter> adapter_)
: adapter(std::move(adapter_)) {}
2020-06-21 16:36:28 +00:00
/**
2020-06-21 19:31:57 +00:00
* Creates analog device from joystick axes
* @param params contains parameters for creating the device:
* - "port": the nth gcpad on the adapter
* - "axis_x": the index of the axis to be bind as x-axis
* - "axis_y": the index of the axis to be bind as y-axis
*/
2020-06-21 16:36:28 +00:00
std::unique_ptr<Input::AnalogDevice> GCAnalogFactory::Create(const Common::ParamPackage& params) {
const int port = params.Get("port", 0);
const int axis_x = params.Get("axis_x", 0);
const int axis_y = params.Get("axis_y", 1);
const float deadzone = std::clamp(params.Get("deadzone", 0.0f), 0.0f, .99f);
return std::make_unique<GCAnalog>(port, axis_x, axis_y, deadzone, adapter.get());
2020-06-21 16:36:28 +00:00
}
void GCAnalogFactory::BeginConfiguration() {
polling = true;
adapter->BeginConfiguration();
2020-06-21 16:36:28 +00:00
}
void GCAnalogFactory::EndConfiguration() {
polling = false;
adapter->EndConfiguration();
2020-06-21 16:36:28 +00:00
}
Common::ParamPackage GCAnalogFactory::GetNextInput() {
GCAdapter::GCPadStatus pad;
auto& queue = adapter->GetPadQueue();
for (std::size_t port = 0; port < queue.size(); ++port) {
while (queue[port].Pop(pad)) {
if (pad.axis == GCAdapter::PadAxes::Undefined ||
std::abs((pad.axis_value - 128.0f) / 128.0f) < 0.1) {
2020-06-21 16:36:28 +00:00
continue;
}
// An analog device needs two axes, so we need to store the axis for later and wait for
// a second input event. The axes also must be from the same joystick.
const u8 axis = static_cast<u8>(pad.axis);
2020-06-21 16:36:28 +00:00
if (analog_x_axis == -1) {
analog_x_axis = axis;
controller_number = port;
} else if (analog_y_axis == -1 && analog_x_axis != axis && controller_number == port) {
2020-06-21 16:36:28 +00:00
analog_y_axis = axis;
}
}
}
Common::ParamPackage params;
if (analog_x_axis != -1 && analog_y_axis != -1) {
params.Set("engine", "gcpad");
params.Set("port", controller_number);
params.Set("axis_x", analog_x_axis);
params.Set("axis_y", analog_y_axis);
analog_x_axis = -1;
analog_y_axis = -1;
controller_number = -1;
return params;
}
return params;
}
2020-06-21 16:36:28 +00:00
} // namespace InputCommon