Avoids the use of global accessors, removing the reliance on global
state. This also makes dependencies explicit in the interface, as
opposed to being hidden
Provides a basic implementation of SetAutoSleepDisabled. Until idle
handling is implemented, this is about the best we can do.
In the meantime, provide a rough documenting of specifics that occur
when this function is called on actual hardware.
IPC-100 was changed to InitializeApplicationInfoOld instead of InitializeApplicationInfo. IPC-150 makes an indentical call to IPC-100 however does extra processing. They should not have the same name as it's quite confusing to debug.
These can be generified together by using a concept type to designate
them. This also has the benefit of not making copies of potentially very
large arrays.
Renames the members to more accurately indicate what they signify.
"OneShot" and "Sticky" are kind of ambiguous identifiers for the reset
types, and can be kind of misleading. Automatic and Manual communicate
the kind of reset type in a clearer manner. Either the event is
automatically reset, or it isn't and must be manually cleared.
The "OneShot" and "Sticky" terminology is just a hold-over from Citra
where the kernel had a third type of event reset type known as "Pulse".
Given the Switch kernel only has two forms of event reset types, we
don't need to keep the old terminology around anymore.
In several places, we have request parsers where there's nothing to
really parse, simply because the HLE function in question operates on
buffers. In these cases we can just remove these instances altogether.
In the other cases, we can retrieve the relevant members from the parser
and at least log them out, giving them some use.
For whatever reason, shared memory was being used here instead of
transfer memory, which (quite clearly) will not work based off the name
of the function.
This corrects this wonky usage of shared memory.
These functions act in tandem similar to how a lock or mutex require a
balanced lock()/unlock() sequence.
EnterFatalSection simply increments a counter for how many times it has
been called, while LeaveFatalSection ensures that a previous call to
EnterFatalSection has occured. If a previous call has occurred (the
counter is not zero), then the counter gets decremented as one would
expect. If a previous call has not occurred (the counter is zero), then
an error code is returned.