// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "common/arm64/native_clock.h" #include "common/bit_cast.h" #include "common/literals.h" #include "core/arm/nce/arm_nce.h" #include "core/arm/nce/guest_context.h" #include "core/arm/nce/instructions.h" #include "core/arm/nce/patch.h" #include "core/core.h" #include "core/core_timing.h" #include "core/hle/kernel/svc.h" namespace Core::NCE { using namespace Common::Literals; using namespace oaknut::util; using NativeExecutionParameters = Kernel::KThread::NativeExecutionParameters; constexpr size_t MaxRelativeBranch = 128_MiB; constexpr u32 ModuleCodeIndex = 0x24 / sizeof(u32); Patcher::Patcher() : c(m_patch_instructions) {} Patcher::~Patcher() = default; void Patcher::PatchText(const Kernel::PhysicalMemory& program_image, const Kernel::CodeSet::Segment& code) { // Write save context helper function. c.l(m_save_context); WriteSaveContext(); // Write load context helper function. c.l(m_load_context); WriteLoadContext(); // Retrieve text segment data. const auto text = std::span{program_image}.subspan(code.offset, code.size); const auto text_words = std::span{reinterpret_cast(text.data()), text.size() / sizeof(u32)}; // Loop through instructions, patching as needed. for (u32 i = ModuleCodeIndex; i < static_cast(text_words.size()); i++) { const u32 inst = text_words[i]; const auto AddRelocations = [&] { const uintptr_t this_offset = i * sizeof(u32); const uintptr_t next_offset = this_offset + sizeof(u32); // Relocate from here to patch. this->BranchToPatch(this_offset); // Relocate from patch to next instruction. return next_offset; }; // SVC if (auto svc = SVC{inst}; svc.Verify()) { WriteSvcTrampoline(AddRelocations(), svc.GetValue()); continue; } // MRS Xn, TPIDR_EL0 // MRS Xn, TPIDRRO_EL0 if (auto mrs = MRS{inst}; mrs.Verify() && (mrs.GetSystemReg() == TpidrroEl0 || mrs.GetSystemReg() == TpidrEl0)) { const auto src_reg = mrs.GetSystemReg() == TpidrroEl0 ? oaknut::SystemReg::TPIDRRO_EL0 : oaknut::SystemReg::TPIDR_EL0; const auto dest_reg = oaknut::XReg{static_cast(mrs.GetRt())}; WriteMrsHandler(AddRelocations(), dest_reg, src_reg); continue; } // MRS Xn, CNTPCT_EL0 if (auto mrs = MRS{inst}; mrs.Verify() && mrs.GetSystemReg() == CntpctEl0) { WriteCntpctHandler(AddRelocations(), oaknut::XReg{static_cast(mrs.GetRt())}); continue; } // MRS Xn, CNTFRQ_EL0 if (auto mrs = MRS{inst}; mrs.Verify() && mrs.GetSystemReg() == CntfrqEl0) { UNREACHABLE(); } // MSR TPIDR_EL0, Xn if (auto msr = MSR{inst}; msr.Verify() && msr.GetSystemReg() == TpidrEl0) { WriteMsrHandler(AddRelocations(), oaknut::XReg{static_cast(msr.GetRt())}); continue; } } // Determine patching mode for the final relocation step const size_t image_size = program_image.size(); this->mode = image_size > MaxRelativeBranch ? PatchMode::PreText : PatchMode::PostData; } void Patcher::RelocateAndCopy(Common::ProcessAddress load_base, const Kernel::CodeSet::Segment& code, Kernel::PhysicalMemory& program_image, EntryTrampolines* out_trampolines) { const size_t patch_size = GetSectionSize(); const size_t image_size = program_image.size(); // Retrieve text segment data. const auto text = std::span{program_image}.subspan(code.offset, code.size); const auto text_words = std::span{reinterpret_cast(text.data()), text.size() / sizeof(u32)}; const auto ApplyBranchToPatchRelocation = [&](u32* target, const Relocation& rel) { oaknut::CodeGenerator rc{target}; if (mode == PatchMode::PreText) { rc.B(rel.patch_offset - patch_size - rel.module_offset); } else { rc.B(image_size - rel.module_offset + rel.patch_offset); } }; const auto ApplyBranchToModuleRelocation = [&](u32* target, const Relocation& rel) { oaknut::CodeGenerator rc{target}; if (mode == PatchMode::PreText) { rc.B(patch_size - rel.patch_offset + rel.module_offset); } else { rc.B(rel.module_offset - image_size - rel.patch_offset); } }; const auto RebasePatch = [&](ptrdiff_t patch_offset) { if (mode == PatchMode::PreText) { return GetInteger(load_base) + patch_offset; } else { return GetInteger(load_base) + image_size + patch_offset; } }; const auto RebasePc = [&](uintptr_t module_offset) { if (mode == PatchMode::PreText) { return GetInteger(load_base) + patch_size + module_offset; } else { return GetInteger(load_base) + module_offset; } }; // We are now ready to relocate! for (const Relocation& rel : m_branch_to_patch_relocations) { ApplyBranchToPatchRelocation(text_words.data() + rel.module_offset / sizeof(u32), rel); } for (const Relocation& rel : m_branch_to_module_relocations) { ApplyBranchToModuleRelocation(m_patch_instructions.data() + rel.patch_offset / sizeof(u32), rel); } // Rewrite PC constants and record post trampolines for (const Relocation& rel : m_write_module_pc_relocations) { oaknut::CodeGenerator rc{m_patch_instructions.data() + rel.patch_offset / sizeof(u32)}; rc.dx(RebasePc(rel.module_offset)); } for (const Trampoline& rel : m_trampolines) { out_trampolines->insert({RebasePc(rel.module_offset), RebasePatch(rel.patch_offset)}); } // Cortex-A57 seems to treat all exclusives as ordered, but newer processors do not. // Convert to ordered to preserve this assumption. for (u32 i = ModuleCodeIndex; i < static_cast(text_words.size()); i++) { const u32 inst = text_words[i]; if (auto exclusive = Exclusive{inst}; exclusive.Verify()) { text_words[i] = exclusive.AsOrdered(); } } // Copy to program image if (this->mode == PatchMode::PreText) { std::memcpy(program_image.data(), m_patch_instructions.data(), m_patch_instructions.size() * sizeof(u32)); } else { program_image.resize(image_size + patch_size); std::memcpy(program_image.data() + image_size, m_patch_instructions.data(), m_patch_instructions.size() * sizeof(u32)); } } size_t Patcher::GetSectionSize() const noexcept { return Common::AlignUp(m_patch_instructions.size() * sizeof(u32), Core::Memory::YUZU_PAGESIZE); } void Patcher::WriteLoadContext() { // This function was called, which modifies X30, so use that as a scratch register. // SP contains the guest X30, so save our return X30 to SP + 8, since we have allocated 16 bytes // of stack. c.STR(X30, SP, 8); c.MRS(X30, oaknut::SystemReg::TPIDR_EL0); c.LDR(X30, X30, offsetof(NativeExecutionParameters, native_context)); // Load system registers. c.LDR(W0, X30, offsetof(GuestContext, fpsr)); c.MSR(oaknut::SystemReg::FPSR, X0); c.LDR(W0, X30, offsetof(GuestContext, fpcr)); c.MSR(oaknut::SystemReg::FPCR, X0); c.LDR(W0, X30, offsetof(GuestContext, nzcv)); c.MSR(oaknut::SystemReg::NZCV, X0); // Load all vector registers. static constexpr size_t VEC_OFF = offsetof(GuestContext, vector_registers); for (int i = 0; i <= 30; i += 2) { c.LDP(oaknut::QReg{i}, oaknut::QReg{i + 1}, X30, VEC_OFF + 16 * i); } // Load all general-purpose registers except X30. for (int i = 0; i <= 28; i += 2) { c.LDP(oaknut::XReg{i}, oaknut::XReg{i + 1}, X30, 8 * i); } // Reload our return X30 from the stack and return. // The patch code will reload the guest X30 for us. c.LDR(X30, SP, 8); c.RET(); } void Patcher::WriteSaveContext() { // This function was called, which modifies X30, so use that as a scratch register. // SP contains the guest X30, so save our X30 to SP + 8, since we have allocated 16 bytes of // stack. c.STR(X30, SP, 8); c.MRS(X30, oaknut::SystemReg::TPIDR_EL0); c.LDR(X30, X30, offsetof(NativeExecutionParameters, native_context)); // Store all general-purpose registers except X30. for (int i = 0; i <= 28; i += 2) { c.STP(oaknut::XReg{i}, oaknut::XReg{i + 1}, X30, 8 * i); } // Store all vector registers. static constexpr size_t VEC_OFF = offsetof(GuestContext, vector_registers); for (int i = 0; i <= 30; i += 2) { c.STP(oaknut::QReg{i}, oaknut::QReg{i + 1}, X30, VEC_OFF + 16 * i); } // Store guest system registers, X30 and SP, using X0 as a scratch register. c.STR(X0, SP, PRE_INDEXED, -16); c.LDR(X0, SP, 16); c.STR(X0, X30, 8 * 30); c.ADD(X0, SP, 32); c.STR(X0, X30, offsetof(GuestContext, sp)); c.MRS(X0, oaknut::SystemReg::FPSR); c.STR(W0, X30, offsetof(GuestContext, fpsr)); c.MRS(X0, oaknut::SystemReg::FPCR); c.STR(W0, X30, offsetof(GuestContext, fpcr)); c.MRS(X0, oaknut::SystemReg::NZCV); c.STR(W0, X30, offsetof(GuestContext, nzcv)); c.LDR(X0, SP, POST_INDEXED, 16); // Reload our return X30 from the stack, and return. c.LDR(X30, SP, 8); c.RET(); } void Patcher::WriteSvcTrampoline(ModuleDestLabel module_dest, u32 svc_id) { // We are about to start saving state, so we need to lock the context. this->LockContext(); // Store guest X30 to the stack. Then, save the context and restore the stack. // This will save all registers except PC, but we know PC at patch time. c.STR(X30, SP, PRE_INDEXED, -16); c.BL(m_save_context); c.LDR(X30, SP, POST_INDEXED, 16); // Now that we've saved all registers, we can use any registers as scratch. // Store PC + 4 to arm interface, since we know the instruction offset from the entry point. oaknut::Label pc_after_svc; c.MRS(X1, oaknut::SystemReg::TPIDR_EL0); c.LDR(X1, X1, offsetof(NativeExecutionParameters, native_context)); c.LDR(X2, pc_after_svc); c.STR(X2, X1, offsetof(GuestContext, pc)); // Store SVC number to execute when we return c.MOV(X2, svc_id); c.STR(W2, X1, offsetof(GuestContext, svc_swi)); // We are calling a SVC. Clear esr_el1 and return it. static_assert(std::is_same_v, u64>); oaknut::Label retry; c.ADD(X2, X1, offsetof(GuestContext, esr_el1)); c.l(retry); c.LDAXR(X0, X2); c.STLXR(W3, XZR, X2); c.CBNZ(W3, retry); // Add "calling SVC" flag. Since this is X0, this is now our return value. c.ORR(X0, X0, static_cast(HaltReason::SupervisorCall)); // Offset the GuestContext pointer to the HostContext member. // STP has limited range of [-512, 504] which we can't reach otherwise // NB: Due to this all offsets below are from the start of HostContext. c.ADD(X1, X1, offsetof(GuestContext, host_ctx)); // Reload host TPIDR_EL0 and SP. static_assert(offsetof(HostContext, host_sp) + 8 == offsetof(HostContext, host_tpidr_el0)); c.LDP(X2, X3, X1, offsetof(HostContext, host_sp)); c.MOV(SP, X2); c.MSR(oaknut::SystemReg::TPIDR_EL0, X3); // Load callee-saved host registers and return to host. static constexpr size_t HOST_REGS_OFF = offsetof(HostContext, host_saved_regs); static constexpr size_t HOST_VREGS_OFF = offsetof(HostContext, host_saved_vregs); c.LDP(X19, X20, X1, HOST_REGS_OFF); c.LDP(X21, X22, X1, HOST_REGS_OFF + 2 * sizeof(u64)); c.LDP(X23, X24, X1, HOST_REGS_OFF + 4 * sizeof(u64)); c.LDP(X25, X26, X1, HOST_REGS_OFF + 6 * sizeof(u64)); c.LDP(X27, X28, X1, HOST_REGS_OFF + 8 * sizeof(u64)); c.LDP(X29, X30, X1, HOST_REGS_OFF + 10 * sizeof(u64)); c.LDP(Q8, Q9, X1, HOST_VREGS_OFF); c.LDP(Q10, Q11, X1, HOST_VREGS_OFF + 2 * sizeof(u128)); c.LDP(Q12, Q13, X1, HOST_VREGS_OFF + 4 * sizeof(u128)); c.LDP(Q14, Q15, X1, HOST_VREGS_OFF + 6 * sizeof(u128)); c.RET(); // Write the post-SVC trampoline address, which will jump back to the guest after restoring its // state. m_trampolines.push_back({c.offset(), module_dest}); // Host called this location. Save the return address so we can // unwind the stack properly when jumping back. c.MRS(X2, oaknut::SystemReg::TPIDR_EL0); c.LDR(X2, X2, offsetof(NativeExecutionParameters, native_context)); c.ADD(X0, X2, offsetof(GuestContext, host_ctx)); c.STR(X30, X0, offsetof(HostContext, host_saved_regs) + 11 * sizeof(u64)); // Reload all guest registers except X30 and PC. // The function also expects 16 bytes of stack already allocated. c.STR(X30, SP, PRE_INDEXED, -16); c.BL(m_load_context); c.LDR(X30, SP, POST_INDEXED, 16); // Use X1 as a scratch register to restore X30. c.STR(X1, SP, PRE_INDEXED, -16); c.MRS(X1, oaknut::SystemReg::TPIDR_EL0); c.LDR(X1, X1, offsetof(NativeExecutionParameters, native_context)); c.LDR(X30, X1, offsetof(GuestContext, cpu_registers) + sizeof(u64) * 30); c.LDR(X1, SP, POST_INDEXED, 16); // Unlock the context. this->UnlockContext(); // Jump back to the instruction after the emulated SVC. this->BranchToModule(module_dest); // Store PC after call. c.l(pc_after_svc); this->WriteModulePc(module_dest); } void Patcher::WriteMrsHandler(ModuleDestLabel module_dest, oaknut::XReg dest_reg, oaknut::SystemReg src_reg) { // Retrieve emulated TLS register from GuestContext. c.MRS(dest_reg, oaknut::SystemReg::TPIDR_EL0); if (src_reg == oaknut::SystemReg::TPIDRRO_EL0) { c.LDR(dest_reg, dest_reg, offsetof(NativeExecutionParameters, tpidrro_el0)); } else { c.LDR(dest_reg, dest_reg, offsetof(NativeExecutionParameters, tpidr_el0)); } // Jump back to the instruction after the emulated MRS. this->BranchToModule(module_dest); } void Patcher::WriteMsrHandler(ModuleDestLabel module_dest, oaknut::XReg src_reg) { const auto scratch_reg = src_reg.index() == 0 ? X1 : X0; c.STR(scratch_reg, SP, PRE_INDEXED, -16); // Save guest value to NativeExecutionParameters::tpidr_el0. c.MRS(scratch_reg, oaknut::SystemReg::TPIDR_EL0); c.STR(src_reg, scratch_reg, offsetof(NativeExecutionParameters, tpidr_el0)); // Restore scratch register. c.LDR(scratch_reg, SP, POST_INDEXED, 16); // Jump back to the instruction after the emulated MSR. this->BranchToModule(module_dest); } void Patcher::WriteCntpctHandler(ModuleDestLabel module_dest, oaknut::XReg dest_reg) { static Common::Arm64::NativeClock clock{}; const auto factor = clock.GetGuestCNTFRQFactor(); const auto raw_factor = Common::BitCast>(factor); const auto use_x2_x3 = dest_reg.index() == 0 || dest_reg.index() == 1; oaknut::XReg scratch0 = use_x2_x3 ? X2 : X0; oaknut::XReg scratch1 = use_x2_x3 ? X3 : X1; oaknut::Label factorlo; oaknut::Label factorhi; // Save scratches. c.STP(scratch0, scratch1, SP, PRE_INDEXED, -16); // Load counter value. c.MRS(dest_reg, oaknut::SystemReg::CNTVCT_EL0); // Load scaling factor. c.LDR(scratch0, factorlo); c.LDR(scratch1, factorhi); // Multiply low bits and get result. c.UMULH(scratch0, dest_reg, scratch0); // Multiply high bits and add low bit result. c.MADD(dest_reg, dest_reg, scratch1, scratch0); // Reload scratches. c.LDP(scratch0, scratch1, SP, POST_INDEXED, 16); // Jump back to the instruction after the emulated MRS. this->BranchToModule(module_dest); // Scaling factor constant values. c.l(factorlo); c.dx(raw_factor[0]); c.l(factorhi); c.dx(raw_factor[1]); } void Patcher::LockContext() { oaknut::Label retry; // Save scratches. c.STP(X0, X1, SP, PRE_INDEXED, -16); // Reload lock pointer. c.l(retry); c.CLREX(); c.MRS(X0, oaknut::SystemReg::TPIDR_EL0); c.ADD(X0, X0, offsetof(NativeExecutionParameters, lock)); static_assert(SpinLockLocked == 0); // Load-linked with acquire ordering. c.LDAXR(W1, X0); // If the value was SpinLockLocked, clear monitor and retry. c.CBZ(W1, retry); // Store-conditional SpinLockLocked with relaxed ordering. c.STXR(W1, WZR, X0); // If we failed to store, retry. c.CBNZ(W1, retry); // We succeeded! Reload scratches. c.LDP(X0, X1, SP, POST_INDEXED, 16); } void Patcher::UnlockContext() { // Save scratches. c.STP(X0, X1, SP, PRE_INDEXED, -16); // Load lock pointer. c.MRS(X0, oaknut::SystemReg::TPIDR_EL0); c.ADD(X0, X0, offsetof(NativeExecutionParameters, lock)); // Load SpinLockUnlocked. c.MOV(W1, SpinLockUnlocked); // Store value with release ordering. c.STLR(W1, X0); // Load scratches. c.LDP(X0, X1, SP, POST_INDEXED, 16); } } // namespace Core::NCE