// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include "common/common_types.h" #include "core/arm/arm_interface.h" #include "core/settings.h" #include "core/core.h" #include "core/mem_map.h" #include "core/core_timing.h" #include "core/hle/hle.h" #include "core/hle/service/gsp_gpu.h" #include "core/hle/service/dsp_dsp.h" #include "core/hle/service/hid/hid.h" #include "core/hw/gpu.h" #include "video_core/command_processor.h" #include "video_core/utils.h" #include "video_core/video_core.h" #include namespace GPU { Regs g_regs; /// True if the current frame was skipped bool g_skip_frame = false; /// 268MHz / gpu_refresh_rate frames per second static u64 frame_ticks; /// Event id for CoreTiming static int vblank_event; /// Total number of frames drawn static u64 frame_count; /// True if the last frame was skipped static bool last_skip_frame = false; template inline void Read(T &var, const u32 raw_addr) { u32 addr = raw_addr - 0x1EF00000; u32 index = addr / 4; // Reads other than u32 are untested, so I'd rather have them abort than silently fail if (index >= Regs::NumIds() || !std::is_same::value) { LOG_ERROR(HW_GPU, "unknown Read%lu @ 0x%08X", sizeof(var) * 8, addr); return; } var = g_regs[addr / 4]; } template inline void Write(u32 addr, const T data) { addr -= 0x1EF00000; u32 index = addr / 4; // Writes other than u32 are untested, so I'd rather have them abort than silently fail if (index >= Regs::NumIds() || !std::is_same::value) { LOG_ERROR(HW_GPU, "unknown Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data, addr); return; } g_regs[index] = static_cast(data); switch (index) { // Memory fills are triggered once the fill value is written. case GPU_REG_INDEX_WORKAROUND(memory_fill_config[0].trigger, 0x00004 + 0x3): case GPU_REG_INDEX_WORKAROUND(memory_fill_config[1].trigger, 0x00008 + 0x3): { const bool is_second_filler = (index != GPU_REG_INDEX(memory_fill_config[0].trigger)); auto& config = g_regs.memory_fill_config[is_second_filler]; if (config.address_start && config.trigger) { u8* start = Memory::GetPointer(Memory::PhysicalToVirtualAddress(config.GetStartAddress())); u8* end = Memory::GetPointer(Memory::PhysicalToVirtualAddress(config.GetEndAddress())); if (config.fill_24bit) { // fill with 24-bit values for (u8* ptr = start; ptr < end; ptr += 3) { ptr[0] = config.value_24bit_r; ptr[1] = config.value_24bit_g; ptr[2] = config.value_24bit_b; } } else if (config.fill_32bit) { // fill with 32-bit values for (u32* ptr = (u32*)start; ptr < (u32*)end; ++ptr) *ptr = config.value_32bit; } else { // fill with 16-bit values for (u16* ptr = (u16*)start; ptr < (u16*)end; ++ptr) *ptr = config.value_16bit; } LOG_TRACE(HW_GPU, "MemoryFill from 0x%08x to 0x%08x", config.GetStartAddress(), config.GetEndAddress()); config.trigger = 0; config.finished = 1; if (!is_second_filler) { GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PSC0); } else { GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PSC1); } } break; } case GPU_REG_INDEX(display_transfer_config.trigger): { const auto& config = g_regs.display_transfer_config; if (config.trigger & 1) { u8* src_pointer = Memory::GetPointer(Memory::PhysicalToVirtualAddress(config.GetPhysicalInputAddress())); u8* dst_pointer = Memory::GetPointer(Memory::PhysicalToVirtualAddress(config.GetPhysicalOutputAddress())); unsigned horizontal_scale = (config.scale_horizontally != 0) ? 2 : 1; unsigned vertical_scale = (config.scale_vertically != 0) ? 2 : 1; u32 output_width = config.output_width / horizontal_scale; u32 output_height = config.output_height / vertical_scale; if (config.raw_copy) { // Raw copies do not perform color conversion nor tiled->linear / linear->tiled conversions // TODO(Subv): Verify if raw copies perform scaling memcpy(dst_pointer, src_pointer, config.output_width * config.output_height * GPU::Regs::BytesPerPixel(config.output_format)); LOG_TRACE(HW_GPU, "DisplayTriggerTransfer: 0x%08x bytes from 0x%08x(%ux%u)-> 0x%08x(%ux%u), flags 0x%08X, Raw copy", config.output_height * output_width * GPU::Regs::BytesPerPixel(config.output_format), config.GetPhysicalInputAddress(), config.input_width.Value(), config.input_height.Value(), config.GetPhysicalOutputAddress(), config.output_width.Value(), config.output_height.Value(), config.output_format.Value(), config.flags); GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PPF); break; } // TODO(Subv): Blend the pixels when horizontal / vertical scaling is enabled, // right now we're just skipping the extra pixels. for (u32 y = 0; y < output_height; ++y) { for (u32 x = 0; x < output_width; ++x) { Math::Vec4 src_color = { 0, 0, 0, 0 }; u32 scaled_x = x * horizontal_scale; u32 scaled_y = y * vertical_scale; u32 dst_bytes_per_pixel = GPU::Regs::BytesPerPixel(config.output_format); u32 src_bytes_per_pixel = GPU::Regs::BytesPerPixel(config.input_format); u32 src_offset; u32 dst_offset; if (config.output_tiled) { // Interpret the input as linear and the output as tiled u32 coarse_y = y & ~7; u32 stride = output_width * dst_bytes_per_pixel; src_offset = (scaled_x + scaled_y * config.input_width) * src_bytes_per_pixel; dst_offset = VideoCore::GetMortonOffset(x, y, dst_bytes_per_pixel) + coarse_y * stride; } else { // Interpret the input as tiled and the output as linear u32 coarse_y = scaled_y & ~7; u32 stride = config.input_width * src_bytes_per_pixel; src_offset = VideoCore::GetMortonOffset(scaled_x, scaled_y, src_bytes_per_pixel) + coarse_y * stride; dst_offset = (x + y * output_width) * dst_bytes_per_pixel; } const u8* src_pixel = src_pointer + src_offset; switch (config.input_format) { case Regs::PixelFormat::RGBA8: src_color = Color::DecodeRGBA8(src_pixel); break; case Regs::PixelFormat::RGB8: src_color = Color::DecodeRGB8(src_pixel); break; case Regs::PixelFormat::RGB565: src_color = Color::DecodeRGB565(src_pixel); break; case Regs::PixelFormat::RGB5A1: src_color = Color::DecodeRGB5A1(src_pixel); break; case Regs::PixelFormat::RGBA4: src_color = Color::DecodeRGBA4(src_pixel); break; default: LOG_ERROR(HW_GPU, "Unknown source framebuffer format %x", config.input_format.Value()); break; } u8* dst_pixel = dst_pointer + dst_offset; switch (config.output_format) { case Regs::PixelFormat::RGBA8: Color::EncodeRGBA8(src_color, dst_pixel); break; case Regs::PixelFormat::RGB8: Color::EncodeRGB8(src_color, dst_pixel); break; case Regs::PixelFormat::RGB565: Color::EncodeRGB565(src_color, dst_pixel); break; case Regs::PixelFormat::RGB5A1: Color::EncodeRGB5A1(src_color, dst_pixel); break; case Regs::PixelFormat::RGBA4: Color::EncodeRGBA4(src_color, dst_pixel); break; default: LOG_ERROR(HW_GPU, "Unknown destination framebuffer format %x", config.output_format.Value()); break; } } } LOG_TRACE(HW_GPU, "DisplayTriggerTransfer: 0x%08x bytes from 0x%08x(%ux%u)-> 0x%08x(%ux%u), dst format %x, flags 0x%08X", config.output_height * output_width * GPU::Regs::BytesPerPixel(config.output_format), config.GetPhysicalInputAddress(), config.input_width.Value(), config.input_height.Value(), config.GetPhysicalOutputAddress(), output_width, output_height, config.output_format.Value(), config.flags); GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PPF); } break; } // Seems like writing to this register triggers processing case GPU_REG_INDEX(command_processor_config.trigger): { const auto& config = g_regs.command_processor_config; if (config.trigger & 1) { u32* buffer = (u32*)Memory::GetPointer(Memory::PhysicalToVirtualAddress(config.GetPhysicalAddress())); Pica::CommandProcessor::ProcessCommandList(buffer, config.size); } break; } default: break; } } // Explicitly instantiate template functions because we aren't defining this in the header: template void Read(u64 &var, const u32 addr); template void Read(u32 &var, const u32 addr); template void Read(u16 &var, const u32 addr); template void Read(u8 &var, const u32 addr); template void Write(u32 addr, const u64 data); template void Write(u32 addr, const u32 data); template void Write(u32 addr, const u16 data); template void Write(u32 addr, const u8 data); /// Update hardware static void VBlankCallback(u64 userdata, int cycles_late) { frame_count++; last_skip_frame = g_skip_frame; g_skip_frame = (frame_count & Settings::values.frame_skip) != 0; // Swap buffers based on the frameskip mode, which is a little bit tricky. When // a frame is being skipped, nothing is being rendered to the internal framebuffer(s). // So, we should only swap frames if the last frame was rendered. The rules are: // - If frameskip == 0 (disabled), always swap buffers // - If frameskip == 1, swap buffers every other frame (starting from the first frame) // - If frameskip > 1, swap buffers every frameskip^n frames (starting from the second frame) if ((((Settings::values.frame_skip != 1) ^ last_skip_frame) && last_skip_frame != g_skip_frame) || Settings::values.frame_skip == 0) { VideoCore::g_renderer->SwapBuffers(); } // Signal to GSP that GPU interrupt has occurred // TODO(yuriks): hwtest to determine if PDC0 is for the Top screen and PDC1 for the Sub // screen, or if both use the same interrupts and these two instead determine the // beginning and end of the VBlank period. If needed, split the interrupt firing into // two different intervals. GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PDC0); GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PDC1); // TODO(bunnei): Fake a DSP interrupt on each frame. This does not belong here, but // until we can emulate DSP interrupts, this is probably the only reasonable place to do // this. Certain games expect this to be periodically signaled. DSP_DSP::SignalInterrupt(); // Check for user input updates Service::HID::HIDUpdate(); // Reschedule recurrent event CoreTiming::ScheduleEvent(frame_ticks - cycles_late, vblank_event); } /// Initialize hardware void Init() { auto& framebuffer_top = g_regs.framebuffer_config[0]; auto& framebuffer_sub = g_regs.framebuffer_config[1]; // Setup default framebuffer addresses (located in VRAM) // .. or at least these are the ones used by system applets. // There's probably a smarter way to come up with addresses // like this which does not require hardcoding. framebuffer_top.address_left1 = 0x181E6000; framebuffer_top.address_left2 = 0x1822C800; framebuffer_top.address_right1 = 0x18273000; framebuffer_top.address_right2 = 0x182B9800; framebuffer_sub.address_left1 = 0x1848F000; framebuffer_sub.address_left2 = 0x184C7800; //framebuffer_sub.address_right1 = unknown; //framebuffer_sub.address_right2 = unknown; framebuffer_top.width = 240; framebuffer_top.height = 400; framebuffer_top.stride = 3 * 240; framebuffer_top.color_format = Regs::PixelFormat::RGB8; framebuffer_top.active_fb = 0; framebuffer_sub.width = 240; framebuffer_sub.height = 320; framebuffer_sub.stride = 3 * 240; framebuffer_sub.color_format = Regs::PixelFormat::RGB8; framebuffer_sub.active_fb = 0; frame_ticks = 268123480 / Settings::values.gpu_refresh_rate; last_skip_frame = false; g_skip_frame = false; vblank_event = CoreTiming::RegisterEvent("GPU::VBlankCallback", VBlankCallback); CoreTiming::ScheduleEvent(frame_ticks, vblank_event); LOG_DEBUG(HW_GPU, "initialized OK"); } /// Shutdown hardware void Shutdown() { LOG_DEBUG(HW_GPU, "shutdown OK"); } } // namespace