yuzu/src/core/hle/service/server_manager.cpp

449 lines
13 KiB
C++

// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/hle/ipc_helpers.h"
#include "core/hle/kernel/hle_ipc.h"
#include "core/hle/kernel/k_client_port.h"
#include "core/hle/kernel/k_client_session.h"
#include "core/hle/kernel/k_event.h"
#include "core/hle/kernel/k_object_name.h"
#include "core/hle/kernel/k_port.h"
#include "core/hle/kernel/k_server_port.h"
#include "core/hle/kernel/k_server_session.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/svc_results.h"
#include "core/hle/service/server_manager.h"
#include "core/hle/service/sm/sm.h"
namespace Service {
constexpr size_t MaximumWaitObjects = 0x40;
enum HandleType {
Port,
Session,
DeferEvent,
Event,
};
ServerManager::ServerManager(Core::System& system) : m_system{system}, m_serve_mutex{system} {
// Initialize event.
m_event = Kernel::KEvent::Create(system.Kernel());
m_event->Initialize(nullptr);
}
ServerManager::~ServerManager() {
// Signal stop.
m_stop_source.request_stop();
m_event->Signal();
// Wait for processing to stop.
m_stopped.wait(false);
m_threads.clear();
// Clean up ports.
for (const auto& [port, handler] : m_ports) {
port->Close();
}
// Clean up sessions.
for (const auto& [session, manager] : m_sessions) {
session->Close();
}
for (const auto& request : m_deferrals) {
request.session->Close();
}
// Close event.
m_event->GetReadableEvent().Close();
m_event->Close();
if (m_deferral_event) {
m_deferral_event->GetReadableEvent().Close();
// Write event is owned by ServiceManager
}
}
void ServerManager::RunServer(std::unique_ptr<ServerManager>&& server_manager) {
server_manager->m_system.RunServer(std::move(server_manager));
}
Result ServerManager::RegisterSession(Kernel::KServerSession* session,
std::shared_ptr<Kernel::SessionRequestManager> manager) {
ASSERT(m_sessions.size() + m_ports.size() < MaximumWaitObjects);
// We are taking ownership of the server session, so don't open it.
// Begin tracking the server session.
{
std::scoped_lock ll{m_list_mutex};
m_sessions.emplace(session, std::move(manager));
}
// Signal the wakeup event.
m_event->Signal();
R_SUCCEED();
}
Result ServerManager::RegisterNamedService(const std::string& service_name,
std::shared_ptr<Kernel::SessionRequestHandler>&& handler,
u32 max_sessions) {
ASSERT(m_sessions.size() + m_ports.size() < MaximumWaitObjects);
// Add the new server to sm:.
ASSERT(R_SUCCEEDED(
m_system.ServiceManager().RegisterService(service_name, max_sessions, handler)));
// Get the registered port.
auto port = m_system.ServiceManager().GetServicePort(service_name);
ASSERT(port.Succeeded());
// Open a new reference to the server port.
(*port)->GetServerPort().Open();
// Begin tracking the server port.
{
std::scoped_lock ll{m_list_mutex};
m_ports.emplace(std::addressof((*port)->GetServerPort()), std::move(handler));
}
// Signal the wakeup event.
m_event->Signal();
R_SUCCEED();
}
Result ServerManager::ManageNamedPort(const std::string& service_name,
std::shared_ptr<Kernel::SessionRequestHandler>&& handler,
u32 max_sessions) {
ASSERT(m_sessions.size() + m_ports.size() < MaximumWaitObjects);
// Create a new port.
auto* port = Kernel::KPort::Create(m_system.Kernel());
port->Initialize(max_sessions, false, service_name);
// Register the port.
Kernel::KPort::Register(m_system.Kernel(), port);
// Ensure that our reference to the port is closed if we fail to register it.
SCOPE_EXIT({
port->GetClientPort().Close();
port->GetServerPort().Close();
});
// Register the object name with the kernel.
R_TRY(Kernel::KObjectName::NewFromName(m_system.Kernel(), std::addressof(port->GetClientPort()),
service_name.c_str()));
// Open a new reference to the server port.
port->GetServerPort().Open();
// Begin tracking the server port.
{
std::scoped_lock ll{m_list_mutex};
m_ports.emplace(std::addressof(port->GetServerPort()), std::move(handler));
}
// We succeeded.
R_SUCCEED();
}
Result ServerManager::ManageDeferral(Kernel::KEvent** out_event) {
// Create a new event.
m_deferral_event = Kernel::KEvent::Create(m_system.Kernel());
ASSERT(m_deferral_event != nullptr);
// Initialize the event.
m_deferral_event->Initialize(nullptr);
// Set the output.
*out_event = m_deferral_event;
// We succeeded.
R_SUCCEED();
}
void ServerManager::StartAdditionalHostThreads(const char* name, size_t num_threads) {
for (size_t i = 0; i < num_threads; i++) {
auto thread_name = fmt::format("{}:{}", name, i + 1);
m_threads.emplace_back(m_system.Kernel().RunOnHostCoreThread(
std::move(thread_name), [&] { this->LoopProcessImpl(); }));
}
}
Result ServerManager::LoopProcess() {
SCOPE_EXIT({
m_stopped.store(true);
m_stopped.notify_all();
});
R_RETURN(this->LoopProcessImpl());
}
Result ServerManager::LoopProcessImpl() {
while (!m_stop_source.stop_requested()) {
R_TRY(this->WaitAndProcessImpl());
}
R_SUCCEED();
}
Result ServerManager::WaitAndProcessImpl() {
Kernel::KScopedAutoObject<Kernel::KSynchronizationObject> wait_obj;
HandleType wait_type{};
// Ensure we are the only thread waiting for this server.
std::unique_lock sl{m_serve_mutex};
// If we're done, return before we start waiting.
R_SUCCEED_IF(m_stop_source.stop_requested());
// Wait for a tracked object to become signaled.
{
s32 num_objs{};
std::array<HandleType, MaximumWaitObjects> wait_types{};
std::array<Kernel::KSynchronizationObject*, MaximumWaitObjects> wait_objs{};
const auto AddWaiter{
[&](Kernel::KSynchronizationObject* synchronization_object, HandleType type) {
// Open a new reference to the object.
synchronization_object->Open();
// Insert into the list.
wait_types[num_objs] = type;
wait_objs[num_objs++] = synchronization_object;
}};
{
std::scoped_lock ll{m_list_mutex};
// Add all of our ports.
for (const auto& [port, handler] : m_ports) {
AddWaiter(port, HandleType::Port);
}
// Add all of our sessions.
for (const auto& [session, manager] : m_sessions) {
AddWaiter(session, HandleType::Session);
}
}
// Add the deferral wakeup event.
if (m_deferral_event != nullptr) {
AddWaiter(std::addressof(m_deferral_event->GetReadableEvent()), HandleType::DeferEvent);
}
// Add the wakeup event.
AddWaiter(std::addressof(m_event->GetReadableEvent()), HandleType::Event);
// Clean up extra references on exit.
SCOPE_EXIT({
for (s32 i = 0; i < num_objs; i++) {
wait_objs[i]->Close();
}
});
// Wait for a signal.
s32 out_index{-1};
R_TRY(Kernel::KSynchronizationObject::Wait(m_system.Kernel(), &out_index, wait_objs.data(),
num_objs, -1));
ASSERT(out_index >= 0 && out_index < num_objs);
// Set the output index.
wait_obj = wait_objs[out_index];
wait_type = wait_types[out_index];
}
// Process what we just received, temporarily removing the object so it is
// not processed concurrently by another thread.
{
switch (wait_type) {
case HandleType::Port: {
// Port signaled.
auto* port = wait_obj->DynamicCast<Kernel::KServerPort*>();
std::shared_ptr<Kernel::SessionRequestHandler> handler;
// Remove from tracking.
{
std::scoped_lock ll{m_list_mutex};
ASSERT(m_ports.contains(port));
m_ports.at(port).swap(handler);
m_ports.erase(port);
}
// Allow other threads to serve.
sl.unlock();
// Finish.
R_RETURN(this->OnPortEvent(port, std::move(handler)));
}
case HandleType::Session: {
// Session signaled.
auto* session = wait_obj->DynamicCast<Kernel::KServerSession*>();
std::shared_ptr<Kernel::SessionRequestManager> manager;
// Remove from tracking.
{
std::scoped_lock ll{m_list_mutex};
ASSERT(m_sessions.contains(session));
m_sessions.at(session).swap(manager);
m_sessions.erase(session);
}
// Allow other threads to serve.
sl.unlock();
// Finish.
R_RETURN(this->OnSessionEvent(session, std::move(manager)));
}
case HandleType::DeferEvent: {
// Clear event.
ASSERT(R_SUCCEEDED(m_deferral_event->Clear()));
// Drain the list of deferrals while we process.
std::list<RequestState> deferrals;
{
std::scoped_lock ll{m_list_mutex};
m_deferrals.swap(deferrals);
}
// Allow other threads to serve.
sl.unlock();
// Finish.
R_RETURN(this->OnDeferralEvent(std::move(deferrals)));
}
case HandleType::Event: {
// Clear event and finish.
R_RETURN(m_event->Clear());
}
default: {
UNREACHABLE();
}
}
}
}
Result ServerManager::OnPortEvent(Kernel::KServerPort* port,
std::shared_ptr<Kernel::SessionRequestHandler>&& handler) {
// Accept a new server session.
Kernel::KServerSession* session = port->AcceptSession();
ASSERT(session != nullptr);
// Create the session manager and install the handler.
auto manager = std::make_shared<Kernel::SessionRequestManager>(m_system.Kernel(), *this);
manager->SetSessionHandler(std::shared_ptr(handler));
// Track the server session.
{
std::scoped_lock ll{m_list_mutex};
m_ports.emplace(port, std::move(handler));
m_sessions.emplace(session, std::move(manager));
}
// Signal the wakeup event.
m_event->Signal();
// We succeeded.
R_SUCCEED();
}
Result ServerManager::OnSessionEvent(Kernel::KServerSession* session,
std::shared_ptr<Kernel::SessionRequestManager>&& manager) {
Result rc{ResultSuccess};
// Try to receive a message.
std::shared_ptr<Kernel::HLERequestContext> context;
rc = session->ReceiveRequest(&context, manager);
// If the session has been closed, we're done.
if (rc == Kernel::ResultSessionClosed) {
// Close the session.
session->Close();
// Finish.
R_SUCCEED();
}
ASSERT(R_SUCCEEDED(rc));
RequestState request{
.session = session,
.context = std::move(context),
.manager = std::move(manager),
};
// Complete the sync request with deferral handling.
R_RETURN(this->CompleteSyncRequest(std::move(request)));
}
Result ServerManager::CompleteSyncRequest(RequestState&& request) {
Result rc{ResultSuccess};
Result service_rc{ResultSuccess};
// Mark the request as not deferred.
request.context->SetIsDeferred(false);
// Complete the request. We have exclusive access to this session.
service_rc = request.manager->CompleteSyncRequest(request.session, *request.context);
// If we've been deferred, we're done.
if (request.context->GetIsDeferred()) {
// Insert into deferral list.
std::scoped_lock ll{m_list_mutex};
m_deferrals.emplace_back(std::move(request));
// Finish.
R_SUCCEED();
}
// Send the reply.
rc = request.session->SendReplyHLE();
// If the session has been closed, we're done.
if (rc == Kernel::ResultSessionClosed || service_rc == IPC::ERR_REMOTE_PROCESS_DEAD) {
// Close the session.
request.session->Close();
// Finish.
R_SUCCEED();
}
ASSERT(R_SUCCEEDED(rc));
ASSERT(R_SUCCEEDED(service_rc));
// Reinsert the session.
{
std::scoped_lock ll{m_list_mutex};
m_sessions.emplace(request.session, std::move(request.manager));
}
// Signal the wakeup event.
m_event->Signal();
// We succeeded.
R_SUCCEED();
}
Result ServerManager::OnDeferralEvent(std::list<RequestState>&& deferrals) {
ON_RESULT_FAILURE {
std::scoped_lock ll{m_list_mutex};
m_deferrals.splice(m_deferrals.end(), deferrals);
};
while (!deferrals.empty()) {
RequestState request = deferrals.front();
deferrals.pop_front();
// Try again to complete the request.
R_TRY(this->CompleteSyncRequest(std::move(request)));
}
R_SUCCEED();
}
} // namespace Service