yuzu/src/video_core/engines/maxwell_3d.h
Lioncash bb960c8cb4 video_core: Use nested namespaces where applicable
Compresses a few namespace specifiers to be more compact.
2018-07-20 18:23:54 -04:00

901 lines
29 KiB
C++

// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <unordered_map>
#include <vector>
#include "common/assert.h"
#include "common/bit_field.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/math_util.h"
#include "video_core/gpu.h"
#include "video_core/macro_interpreter.h"
#include "video_core/memory_manager.h"
#include "video_core/textures/texture.h"
namespace Tegra::Engines {
#define MAXWELL3D_REG_INDEX(field_name) \
(offsetof(Tegra::Engines::Maxwell3D::Regs, field_name) / sizeof(u32))
class Maxwell3D final {
public:
explicit Maxwell3D(MemoryManager& memory_manager);
~Maxwell3D() = default;
/// Register structure of the Maxwell3D engine.
/// TODO(Subv): This structure will need to be made bigger as more registers are discovered.
struct Regs {
static constexpr size_t NUM_REGS = 0xE00;
static constexpr size_t NumRenderTargets = 8;
static constexpr size_t NumViewports = 16;
static constexpr size_t NumCBData = 16;
static constexpr size_t NumVertexArrays = 32;
static constexpr size_t NumVertexAttributes = 32;
static constexpr size_t MaxShaderProgram = 6;
static constexpr size_t MaxShaderStage = 5;
// Maximum number of const buffers per shader stage.
static constexpr size_t MaxConstBuffers = 16;
enum class QueryMode : u32 {
Write = 0,
Sync = 1,
// TODO(Subv): It is currently unknown what the difference between method 2 and method 0
// is.
Write2 = 2,
};
enum class QueryUnit : u32 {
VFetch = 1,
VP = 2,
Rast = 4,
StrmOut = 5,
GP = 6,
ZCull = 7,
Prop = 10,
Crop = 15,
};
enum class QuerySelect : u32 {
Zero = 0,
};
enum class QuerySyncCondition : u32 {
NotEqual = 0,
GreaterThan = 1,
};
enum class ShaderProgram : u32 {
VertexA = 0,
VertexB = 1,
TesselationControl = 2,
TesselationEval = 3,
Geometry = 4,
Fragment = 5,
};
enum class ShaderStage : u32 {
Vertex = 0,
TesselationControl = 1,
TesselationEval = 2,
Geometry = 3,
Fragment = 4,
};
struct VertexAttribute {
enum class Size : u32 {
Size_32_32_32_32 = 0x01,
Size_32_32_32 = 0x02,
Size_16_16_16_16 = 0x03,
Size_32_32 = 0x04,
Size_16_16_16 = 0x05,
Size_8_8_8_8 = 0x0a,
Size_16_16 = 0x0f,
Size_32 = 0x12,
Size_8_8_8 = 0x13,
Size_8_8 = 0x18,
Size_16 = 0x1b,
Size_8 = 0x1d,
Size_10_10_10_2 = 0x30,
Size_11_11_10 = 0x31,
};
enum class Type : u32 {
SignedNorm = 1,
UnsignedNorm = 2,
SignedInt = 3,
UnsignedInt = 4,
UnsignedScaled = 5,
SignedScaled = 6,
Float = 7,
};
union {
BitField<0, 5, u32> buffer;
BitField<6, 1, u32> constant;
BitField<7, 14, u32> offset;
BitField<21, 6, Size> size;
BitField<27, 3, Type> type;
BitField<31, 1, u32> bgra;
};
u32 ComponentCount() const {
switch (size) {
case Size::Size_32_32_32_32:
return 4;
case Size::Size_32_32_32:
return 3;
case Size::Size_16_16_16_16:
return 4;
case Size::Size_32_32:
return 2;
case Size::Size_16_16_16:
return 3;
case Size::Size_8_8_8_8:
return 4;
case Size::Size_16_16:
return 2;
case Size::Size_32:
return 1;
case Size::Size_8_8_8:
return 3;
case Size::Size_8_8:
return 2;
case Size::Size_16:
return 1;
case Size::Size_8:
return 1;
case Size::Size_10_10_10_2:
return 4;
case Size::Size_11_11_10:
return 3;
default:
UNREACHABLE();
}
}
u32 SizeInBytes() const {
switch (size) {
case Size::Size_32_32_32_32:
return 16;
case Size::Size_32_32_32:
return 12;
case Size::Size_16_16_16_16:
return 8;
case Size::Size_32_32:
return 8;
case Size::Size_16_16_16:
return 6;
case Size::Size_8_8_8_8:
return 4;
case Size::Size_16_16:
return 4;
case Size::Size_32:
return 4;
case Size::Size_8_8_8:
return 3;
case Size::Size_8_8:
return 2;
case Size::Size_16:
return 2;
case Size::Size_8:
return 1;
case Size::Size_10_10_10_2:
return 4;
case Size::Size_11_11_10:
return 4;
default:
UNREACHABLE();
}
}
std::string SizeString() const {
switch (size) {
case Size::Size_32_32_32_32:
return "32_32_32_32";
case Size::Size_32_32_32:
return "32_32_32";
case Size::Size_16_16_16_16:
return "16_16_16_16";
case Size::Size_32_32:
return "32_32";
case Size::Size_16_16_16:
return "16_16_16";
case Size::Size_8_8_8_8:
return "8_8_8_8";
case Size::Size_16_16:
return "16_16";
case Size::Size_32:
return "32";
case Size::Size_8_8_8:
return "8_8_8";
case Size::Size_8_8:
return "8_8";
case Size::Size_16:
return "16";
case Size::Size_8:
return "8";
case Size::Size_10_10_10_2:
return "10_10_10_2";
case Size::Size_11_11_10:
return "11_11_10";
}
UNREACHABLE();
return {};
}
std::string TypeString() const {
switch (type) {
case Type::SignedNorm:
return "SNORM";
case Type::UnsignedNorm:
return "UNORM";
case Type::SignedInt:
return "SINT";
case Type::UnsignedInt:
return "UINT";
case Type::UnsignedScaled:
return "USCALED";
case Type::SignedScaled:
return "SSCALED";
case Type::Float:
return "FLOAT";
}
UNREACHABLE();
return {};
}
bool IsNormalized() const {
return (type == Type::SignedNorm) || (type == Type::UnsignedNorm);
}
};
enum class PrimitiveTopology : u32 {
Points = 0x0,
Lines = 0x1,
LineLoop = 0x2,
LineStrip = 0x3,
Triangles = 0x4,
TriangleStrip = 0x5,
TriangleFan = 0x6,
Quads = 0x7,
QuadStrip = 0x8,
Polygon = 0x9,
LinesAdjacency = 0xa,
LineStripAdjacency = 0xb,
TrianglesAdjacency = 0xc,
TriangleStripAdjacency = 0xd,
Patches = 0xe,
};
enum class IndexFormat : u32 {
UnsignedByte = 0x0,
UnsignedShort = 0x1,
UnsignedInt = 0x2,
};
enum class ComparisonOp : u32 {
// These values are used by Nouveau and most games, they correspond to the OpenGL token
// values for these operations.
Never = 0x200,
Less = 0x201,
Equal = 0x202,
LessEqual = 0x203,
Greater = 0x204,
NotEqual = 0x205,
GreaterEqual = 0x206,
Always = 0x207,
// These values are used by some games, they seem to be NV04 values.
NeverOld = 1,
LessOld = 2,
EqualOld = 3,
LessEqualOld = 4,
GreaterOld = 5,
NotEqualOld = 6,
GreaterEqualOld = 7,
AlwaysOld = 8,
};
struct Cull {
enum class FrontFace : u32 {
ClockWise = 0x0900,
CounterClockWise = 0x0901,
};
enum class CullFace : u32 {
Front = 0x0404,
Back = 0x0405,
FrontAndBack = 0x0408,
};
u32 enabled;
FrontFace front_face;
CullFace cull_face;
};
struct Blend {
enum class Equation : u32 {
Add = 1,
Subtract = 2,
ReverseSubtract = 3,
Min = 4,
Max = 5,
};
enum class Factor : u32 {
Zero = 0x1,
One = 0x2,
SourceColor = 0x3,
OneMinusSourceColor = 0x4,
SourceAlpha = 0x5,
OneMinusSourceAlpha = 0x6,
DestAlpha = 0x7,
OneMinusDestAlpha = 0x8,
DestColor = 0x9,
OneMinusDestColor = 0xa,
SourceAlphaSaturate = 0xb,
Source1Color = 0x10,
OneMinusSource1Color = 0x11,
Source1Alpha = 0x12,
OneMinusSource1Alpha = 0x13,
ConstantColor = 0x61,
OneMinusConstantColor = 0x62,
ConstantAlpha = 0x63,
OneMinusConstantAlpha = 0x64,
};
u32 separate_alpha;
Equation equation_rgb;
Factor factor_source_rgb;
Factor factor_dest_rgb;
Equation equation_a;
Factor factor_source_a;
Factor factor_dest_a;
INSERT_PADDING_WORDS(1);
};
struct RenderTargetConfig {
u32 address_high;
u32 address_low;
u32 width;
u32 height;
Tegra::RenderTargetFormat format;
u32 block_dimensions;
u32 array_mode;
u32 layer_stride;
u32 base_layer;
INSERT_PADDING_WORDS(7);
GPUVAddr Address() const {
return static_cast<GPUVAddr>((static_cast<GPUVAddr>(address_high) << 32) |
address_low);
}
};
bool IsShaderConfigEnabled(size_t index) const {
// The VertexB is always enabled.
if (index == static_cast<size_t>(Regs::ShaderProgram::VertexB)) {
return true;
}
return shader_config[index].enable != 0;
}
union {
struct {
INSERT_PADDING_WORDS(0x45);
struct {
INSERT_PADDING_WORDS(1);
u32 data;
u32 entry;
} macros;
INSERT_PADDING_WORDS(0x1B8);
RenderTargetConfig rt[NumRenderTargets];
struct {
f32 scale_x;
f32 scale_y;
f32 scale_z;
f32 translate_x;
f32 translate_y;
f32 translate_z;
INSERT_PADDING_WORDS(2);
MathUtil::Rectangle<s32> GetRect() const {
return {
GetX(), // left
GetY() + GetHeight(), // top
GetX() + GetWidth(), // right
GetY() // bottom
};
};
s32 GetX() const {
return static_cast<s32>(std::max(0.0f, translate_x - std::fabs(scale_x)));
}
s32 GetY() const {
return static_cast<s32>(std::max(0.0f, translate_y - std::fabs(scale_y)));
}
s32 GetWidth() const {
return static_cast<s32>(translate_x + std::fabs(scale_x)) - GetX();
}
s32 GetHeight() const {
return static_cast<s32>(translate_y + std::fabs(scale_y)) - GetY();
}
} viewport_transform[NumViewports];
struct {
union {
BitField<0, 16, u32> x;
BitField<16, 16, u32> width;
};
union {
BitField<0, 16, u32> y;
BitField<16, 16, u32> height;
};
float depth_range_near;
float depth_range_far;
} viewport[NumViewports];
INSERT_PADDING_WORDS(0x1D);
struct {
u32 first;
u32 count;
} vertex_buffer;
INSERT_PADDING_WORDS(1);
float clear_color[4];
float clear_depth;
INSERT_PADDING_WORDS(0x93);
struct {
u32 address_high;
u32 address_low;
Tegra::DepthFormat format;
u32 block_dimensions;
u32 layer_stride;
GPUVAddr Address() const {
return static_cast<GPUVAddr>((static_cast<GPUVAddr>(address_high) << 32) |
address_low);
}
} zeta;
INSERT_PADDING_WORDS(0x5B);
VertexAttribute vertex_attrib_format[NumVertexAttributes];
INSERT_PADDING_WORDS(0xF);
struct {
union {
BitField<0, 4, u32> count;
};
} rt_control;
INSERT_PADDING_WORDS(0x2B);
u32 depth_test_enable;
INSERT_PADDING_WORDS(0x5);
u32 independent_blend_enable;
u32 depth_write_enabled;
INSERT_PADDING_WORDS(0x7);
u32 d3d_cull_mode;
ComparisonOp depth_test_func;
INSERT_PADDING_WORDS(0xB);
struct {
u32 separate_alpha;
Blend::Equation equation_rgb;
Blend::Factor factor_source_rgb;
Blend::Factor factor_dest_rgb;
Blend::Equation equation_a;
Blend::Factor factor_source_a;
INSERT_PADDING_WORDS(1);
Blend::Factor factor_dest_a;
u32 enable_common;
u32 enable[NumRenderTargets];
} blend;
struct {
u32 enable;
u32 front_op_fail;
u32 front_op_zfail;
u32 front_op_zpass;
u32 front_func_func;
u32 front_func_ref;
u32 front_func_mask;
u32 front_mask;
} stencil;
INSERT_PADDING_WORDS(0x3);
union {
BitField<4, 1, u32> triangle_rast_flip;
} screen_y_control;
INSERT_PADDING_WORDS(0x21);
u32 vb_element_base;
INSERT_PADDING_WORDS(0x49);
struct {
u32 tsc_address_high;
u32 tsc_address_low;
u32 tsc_limit;
GPUVAddr TSCAddress() const {
return static_cast<GPUVAddr>(
(static_cast<GPUVAddr>(tsc_address_high) << 32) | tsc_address_low);
}
} tsc;
INSERT_PADDING_WORDS(0x3);
struct {
u32 tic_address_high;
u32 tic_address_low;
u32 tic_limit;
GPUVAddr TICAddress() const {
return static_cast<GPUVAddr>(
(static_cast<GPUVAddr>(tic_address_high) << 32) | tic_address_low);
}
} tic;
INSERT_PADDING_WORDS(0x5);
struct {
u32 enable;
u32 back_op_fail;
u32 back_op_zfail;
u32 back_op_zpass;
u32 back_func_func;
} stencil_two_side;
INSERT_PADDING_WORDS(0x17);
union {
BitField<2, 1, u32> coord_origin;
BitField<3, 10, u32> enable;
} point_coord_replace;
struct {
u32 code_address_high;
u32 code_address_low;
GPUVAddr CodeAddress() const {
return static_cast<GPUVAddr>(
(static_cast<GPUVAddr>(code_address_high) << 32) | code_address_low);
}
} code_address;
INSERT_PADDING_WORDS(1);
struct {
u32 vertex_end_gl;
union {
u32 vertex_begin_gl;
BitField<0, 16, PrimitiveTopology> topology;
};
} draw;
INSERT_PADDING_WORDS(0x6B);
struct {
u32 start_addr_high;
u32 start_addr_low;
u32 end_addr_high;
u32 end_addr_low;
IndexFormat format;
u32 first;
u32 count;
unsigned FormatSizeInBytes() const {
switch (format) {
case IndexFormat::UnsignedByte:
return 1;
case IndexFormat::UnsignedShort:
return 2;
case IndexFormat::UnsignedInt:
return 4;
}
UNREACHABLE();
}
GPUVAddr StartAddress() const {
return static_cast<GPUVAddr>(
(static_cast<GPUVAddr>(start_addr_high) << 32) | start_addr_low);
}
GPUVAddr EndAddress() const {
return static_cast<GPUVAddr>((static_cast<GPUVAddr>(end_addr_high) << 32) |
end_addr_low);
}
} index_array;
INSERT_PADDING_WORDS(0x7);
INSERT_PADDING_WORDS(0x46);
Cull cull;
INSERT_PADDING_WORDS(0x2B);
union {
u32 raw;
BitField<0, 1, u32> Z;
BitField<1, 1, u32> S;
BitField<2, 1, u32> R;
BitField<3, 1, u32> G;
BitField<4, 1, u32> B;
BitField<5, 1, u32> A;
BitField<6, 4, u32> RT;
BitField<10, 11, u32> layer;
} clear_buffers;
INSERT_PADDING_WORDS(0x4B);
struct {
u32 query_address_high;
u32 query_address_low;
u32 query_sequence;
union {
u32 raw;
BitField<0, 2, QueryMode> mode;
BitField<4, 1, u32> fence;
BitField<12, 4, QueryUnit> unit;
BitField<16, 1, QuerySyncCondition> sync_cond;
BitField<23, 5, QuerySelect> select;
BitField<28, 1, u32> short_query;
} query_get;
GPUVAddr QueryAddress() const {
return static_cast<GPUVAddr>(
(static_cast<GPUVAddr>(query_address_high) << 32) | query_address_low);
}
} query;
INSERT_PADDING_WORDS(0x3C);
struct {
union {
BitField<0, 12, u32> stride;
BitField<12, 1, u32> enable;
};
u32 start_high;
u32 start_low;
u32 divisor;
GPUVAddr StartAddress() const {
return static_cast<GPUVAddr>((static_cast<GPUVAddr>(start_high) << 32) |
start_low);
}
bool IsEnabled() const {
return enable != 0 && StartAddress() != 0;
}
} vertex_array[NumVertexArrays];
Blend independent_blend[NumRenderTargets];
struct {
u32 limit_high;
u32 limit_low;
GPUVAddr LimitAddress() const {
return static_cast<GPUVAddr>((static_cast<GPUVAddr>(limit_high) << 32) |
limit_low);
}
} vertex_array_limit[NumVertexArrays];
struct {
union {
BitField<0, 1, u32> enable;
BitField<4, 4, ShaderProgram> program;
};
u32 offset;
INSERT_PADDING_WORDS(14);
} shader_config[MaxShaderProgram];
INSERT_PADDING_WORDS(0x80);
struct {
u32 cb_size;
u32 cb_address_high;
u32 cb_address_low;
u32 cb_pos;
u32 cb_data[NumCBData];
GPUVAddr BufferAddress() const {
return static_cast<GPUVAddr>(
(static_cast<GPUVAddr>(cb_address_high) << 32) | cb_address_low);
}
} const_buffer;
INSERT_PADDING_WORDS(0x10);
struct {
union {
u32 raw_config;
BitField<0, 1, u32> valid;
BitField<4, 5, u32> index;
};
INSERT_PADDING_WORDS(7);
} cb_bind[MaxShaderStage];
INSERT_PADDING_WORDS(0x56);
u32 tex_cb_index;
INSERT_PADDING_WORDS(0x395);
struct {
/// Compressed address of a buffer that holds information about bound SSBOs.
/// This address is usually bound to c0 in the shaders.
u32 buffer_address;
GPUVAddr BufferAddress() const {
return static_cast<GPUVAddr>(buffer_address) << 8;
}
} ssbo_info;
INSERT_PADDING_WORDS(0x11);
struct {
u32 address[MaxShaderStage];
u32 size[MaxShaderStage];
} tex_info_buffers;
INSERT_PADDING_WORDS(0xCC);
};
std::array<u32, NUM_REGS> reg_array;
};
} regs{};
static_assert(sizeof(Regs) == Regs::NUM_REGS * sizeof(u32), "Maxwell3D Regs has wrong size");
struct State {
struct ConstBufferInfo {
GPUVAddr address;
u32 index;
u32 size;
bool enabled;
};
struct ShaderStageInfo {
std::array<ConstBufferInfo, Regs::MaxConstBuffers> const_buffers;
};
std::array<ShaderStageInfo, Regs::MaxShaderStage> shader_stages;
};
State state{};
MemoryManager& memory_manager;
/// Reads a register value located at the input method address
u32 GetRegisterValue(u32 method) const;
/// Write the value to the register identified by method.
void WriteReg(u32 method, u32 value, u32 remaining_params);
/// Returns a list of enabled textures for the specified shader stage.
std::vector<Texture::FullTextureInfo> GetStageTextures(Regs::ShaderStage stage) const;
/// Returns the texture information for a specific texture in a specific shader stage.
Texture::FullTextureInfo GetStageTexture(Regs::ShaderStage stage, size_t offset) const;
private:
std::unordered_map<u32, std::vector<u32>> uploaded_macros;
/// Macro method that is currently being executed / being fed parameters.
u32 executing_macro = 0;
/// Parameters that have been submitted to the macro call so far.
std::vector<u32> macro_params;
/// Interpreter for the macro codes uploaded to the GPU.
MacroInterpreter macro_interpreter;
/// Retrieves information about a specific TIC entry from the TIC buffer.
Texture::TICEntry GetTICEntry(u32 tic_index) const;
/// Retrieves information about a specific TSC entry from the TSC buffer.
Texture::TSCEntry GetTSCEntry(u32 tsc_index) const;
/**
* Call a macro on this engine.
* @param method Method to call
* @param parameters Arguments to the method call
*/
void CallMacroMethod(u32 method, std::vector<u32> parameters);
/// Handles writes to the macro uploading registers.
void ProcessMacroUpload(u32 data);
/// Handles a write to the CLEAR_BUFFERS register.
void ProcessClearBuffers();
/// Handles a write to the QUERY_GET register.
void ProcessQueryGet();
/// Handles a write to the CB_DATA[i] register.
void ProcessCBData(u32 value);
/// Handles a write to the CB_BIND register.
void ProcessCBBind(Regs::ShaderStage stage);
/// Handles a write to the VERTEX_END_GL register, triggering a draw.
void DrawArrays();
};
#define ASSERT_REG_POSITION(field_name, position) \
static_assert(offsetof(Maxwell3D::Regs, field_name) == position * 4, \
"Field " #field_name " has invalid position")
ASSERT_REG_POSITION(macros, 0x45);
ASSERT_REG_POSITION(rt, 0x200);
ASSERT_REG_POSITION(viewport_transform[0], 0x280);
ASSERT_REG_POSITION(viewport, 0x300);
ASSERT_REG_POSITION(vertex_buffer, 0x35D);
ASSERT_REG_POSITION(clear_color[0], 0x360);
ASSERT_REG_POSITION(clear_depth, 0x364);
ASSERT_REG_POSITION(zeta, 0x3F8);
ASSERT_REG_POSITION(vertex_attrib_format[0], 0x458);
ASSERT_REG_POSITION(rt_control, 0x487);
ASSERT_REG_POSITION(depth_test_enable, 0x4B3);
ASSERT_REG_POSITION(independent_blend_enable, 0x4B9);
ASSERT_REG_POSITION(depth_write_enabled, 0x4BA);
ASSERT_REG_POSITION(d3d_cull_mode, 0x4C2);
ASSERT_REG_POSITION(depth_test_func, 0x4C3);
ASSERT_REG_POSITION(blend, 0x4CF);
ASSERT_REG_POSITION(stencil, 0x4E0);
ASSERT_REG_POSITION(screen_y_control, 0x4EB);
ASSERT_REG_POSITION(vb_element_base, 0x50D);
ASSERT_REG_POSITION(tsc, 0x557);
ASSERT_REG_POSITION(tic, 0x55D);
ASSERT_REG_POSITION(stencil_two_side, 0x565);
ASSERT_REG_POSITION(point_coord_replace, 0x581);
ASSERT_REG_POSITION(code_address, 0x582);
ASSERT_REG_POSITION(draw, 0x585);
ASSERT_REG_POSITION(index_array, 0x5F2);
ASSERT_REG_POSITION(cull, 0x646);
ASSERT_REG_POSITION(clear_buffers, 0x674);
ASSERT_REG_POSITION(query, 0x6C0);
ASSERT_REG_POSITION(vertex_array[0], 0x700);
ASSERT_REG_POSITION(independent_blend, 0x780);
ASSERT_REG_POSITION(vertex_array_limit[0], 0x7C0);
ASSERT_REG_POSITION(shader_config[0], 0x800);
ASSERT_REG_POSITION(const_buffer, 0x8E0);
ASSERT_REG_POSITION(cb_bind[0], 0x904);
ASSERT_REG_POSITION(tex_cb_index, 0x982);
ASSERT_REG_POSITION(ssbo_info, 0xD18);
ASSERT_REG_POSITION(tex_info_buffers.address[0], 0xD2A);
ASSERT_REG_POSITION(tex_info_buffers.size[0], 0xD2F);
#undef ASSERT_REG_POSITION
} // namespace Tegra::Engines